|
|
Знаете ли Вы, что ... | |
![]() |
...нарушения правил форума наказываются. Старайтесь их не нарушать. |
<< Предыдущий совет - Случайный совет - Следующий совет >> |
Разминка для мозгов Загадки, задачи, головоломки - тренируем мозг |
Ответить |
|
Опции темы | Опции просмотра |
![]() |
#21 | |
![]() ![]() |
Цитата:
во-вторых, находится на одинаковом расстоянии от фокуса F и директрисы d является искомой точкой пересечения параболы и прямой, так как она удовлетворяет основному свойству параболы и тем самым, принадлежит ей. Мы рассмотрим случай, когда PQ пересекается с директрисой. ![]() Построение. Продолжим прямую PQ, до пересечения Е с директрисой. Построим прямую, проходящую через фокус Е перпендикулярно d. Пусть она пересекается с директрисой d в точке С, а с прямой PQ в точке D. Построим прямую, проходящую через фокус Е параллельно PQ. Пусть она пересекается с директрисой d в точке В. Построим прямую, проходящую через В перпендикулярно d.. Пусть она пересекается с прямой PQ в точке А. Докажем, что точка А – искомая, т.е является точкой пересечения параболы и прямой PQ. То что она лежит на прямой PQ следует из построения. Для доказательства равенства AB=AF имеем пока следующее (см. рисунок): 1) Угол BFС равен углу EDC (обозначим их через α ) 2) Угол FBC равен углу DEC (они равны 90-α ) 3) Так как углы ABC и DCF прямые, то ABF=90-(90- α )= α . Осталось доказать, что угол AFВ равен α. Кто возьмется?
__________________
http://www.matholymp.zn.uz |
|
|
Ответить |
"+" от:
|
Реклама и уведомления | |
![]() |
#22 |
![]()
Сообщений: 924
+ 685
538/329
– 2
0/0
![]() |
![]() Это решение, что называется, «в лоб». Поскольку в нашем распоряжении только циркуль и линейка, мы можем искать точки параболы, лежащие на каких-либо доступных нам окружностях или прямых. Поскольку каждая точка параболы принадлежит какой-то из образующих конуса, плоским сечением которого данная парабола является, логично найти образующие, лежащие в плоскости, которой принадлежит данная прямая PQ. Для начала нам нужно выбрать конус и найти такое положение секущей плоскости, которое даст в сечении заданную параболу. Можно показать, что данную параболу проще всего получить как сечение прямоугольного кругового конуса плоскостью, расположенной на расстоянии p от одной из его образующих. Разместим исходные данные на горизонтальной плоскости проекций H. Начертим прямоугольный конус на вертикальной плоскости проекций V и проведем параллельно горизонтальной его образующей секущую плоскость на расстоянии p от нее. Размеры конуса выберем такие, чтоб данные точки P и Q оказались в пространстве между его вершиной и основанием. Введем также дополнительную плоскость проекций B как вид на конус со стороны его вершины. Проведем прямую PQ. Построим проекции P’ и Q’ данных точек в вертикальной плоскости. Они лежат в плоскости параболы. В горизонтальной плоскости проведем из вершины параболы O лучи OP и OQ, в вертикальной плоскости лучи OP’ и OQ’ до пересечения с основанием конуса в точках K’ и L’ соответственно. (Основание конуса является у нас границей между вертикальной V и дополнительной B плоскостями проекций.) Найдя с помощью проекционных связей расположение точек K и L на горизонтальной плоскости, строим их и на дополнительной проекции – точки K’’ и L’’. Проведем в основании конуса хорду M’’N’’ через точки K’’ и L’’. Хорда M’’N’’ также будет принадлежать плоскости OPQ. Плоскость OPQ пересекается с плоскостью параболы по прямой PQ, следовательно точки пересечения образующих OM’’ и ON’’ с плоскостью параболы принадлежат параболе! Строим сначала проекции концов хорды M’ и N’ в вертикальной плоскости, затем строим образующие OM’ и ON’ в вертикальной плоскости и на их пересечении с плоскостью параболы отмечаем точки T’ и S’. Осталось только спроецировать их на горизонтальную плоскость и найти их место на прямой PQ. T и S – искомые точки. Да, возможно, следует сделать оговорку, что начертательная геометрия в некоторой степени выходит за рамки элементарной. Но в какой степени? Ведь ничего кроме циркуля и линейки мы в построении не использовали.
__________________
geom.uz Последний раз редактировалось Barbedo; 10.12.2012 в 00:43. |
|
Ответить |
![]() |
#23 | ||
![]()
Сообщений: 924
+ 685
538/329
– 2
0/0
![]() |
Цитата:
![]() Боюсь, Шухрат, что так точки параболы не найти. Предположим, что найденная таким образом точка А принадлежит данной параболе. Проведем через нее прямую P'Q', отличную от PQ, и представим, что вместо прямой PQ нам дана в условии прямая P'Q'. Тем не менее, и в этом случае мы должны были бы, пользуясь тем же методом построения, получить точку A. Строим FB' || P'Q', проводим B'A' || CF. Получаем точку A', отличную от А, кроме того, видим, что A'F ≠ A'B'.
__________________
geom.uz |
||
|
Ответить |
|