Моё меню Общее меню Сообщество Правила форума Все прочитано
Вернуться   uForum.uz > БЕСЕДКА > Разминка для мозгов
Сообщения за день Поиск
Знаете ли Вы, что ...
...нарушения правил форума наказываются. Старайтесь их не нарушать.
<< Предыдущий совет - Случайный совет - Следующий совет >>

Разминка для мозгов Загадки, задачи, головоломки - тренируем мозг


Ответить

 
Опции темы Опции просмотра
Старый 16.05.2009 00:21   #1  
Known ID Group
Аватар для Barbedo
Оффлайн
Сообщений: 924
+ 685  538/329
– 2  0/0

Uzbekistan
С другого берега

Бухта представляет из себя острый угол. Найти на левом берегу бухты точку, из которой пляж, расположенный на правом берегу бухты, виден под наибольшим углом.
__________________
geom.uz
Ответить 
Старый 16.05.2009 04:15   #2  
Known ID Group uParty Member
Аватар для b_a_lamut
Оффлайн
Наладчик радиоэлектронного оборудования и приборов
Сообщений: 2,852
+ 2,023  1,795/942
– 2  11/11

UzbekistanLiveJournal
Цитата:
Сообщение от Barbedo Посмотреть сообщение
Бухта представляет из себя острый угол. Найти на левом берегу бухты точку, из которой пляж, расположенный на правом берегу бухты, виден под наибольшим углом.
Я, конечно, как всегда, может быть, и ошибаюсь, но проверял лично транспортиром непосредственно в бухте Барахте. Чем ближе я подходил к вершине угла этой бухты, тем больше становился угол обзора живописного правого берега. Но это отрицательно сказывалось, на самом обзоре, ввиду его приближения к прямолинейности. Когда я дошёл до вершины угла, то засомневался. Вроде бы я находился на прямой линии обзора и угол должен был быть равен 180 градусам, но кто знает, какие расчёты придумают математики, чтобы отвлечь нас от реальной действительности... В общем, предполагаю, не настаивая, что самый большой угол равен 180 градусов за вычетом угла бухты, а точка наблюдения находится в вершине этого угла
Ответить 
Старый 16.05.2009 08:43   #3  
Known ID Group
Аватар для Barbedo
Оффлайн
Сообщений: 924
+ 685  538/329
– 2  0/0

Uzbekistan
Цитата:
Сообщение от b_a_lamut Посмотреть сообщение
Цитата:
Сообщение от Barbedo Посмотреть сообщение
Бухта представляет из себя острый угол. Найти на левом берегу бухты точку, из которой пляж, расположенный на правом берегу бухты, виден под наибольшим углом.
Я, конечно, как всегда, может быть, и ошибаюсь, но проверял лично транспортиром непосредственно в бухте Барахте. Чем ближе я подходил к вершине угла этой бухты, тем больше становился угол обзора живописного правого берега. Но это отрицательно сказывалось, на самом обзоре, ввиду его приближения к прямолинейности. Когда я дошёл до вершины угла, то засомневался. Вроде бы я находился на прямой линии обзора и угол должен был быть равен 180 градусам, но кто знает, какие расчёты придумают математики, чтобы отвлечь нас от реальной действительности... В общем, предполагаю, не настаивая, что самый большой угол равен 180 градусов за вычетом угла бухты, а точка наблюдения находится в вершине этого угла
Видимо, нуобходимо уточнить условие: пляж занимает лишь определенный отрезок правого берега:
__________________
geom.uz

Последний раз редактировалось Barbedo; 16.05.2009 в 09:12.
Ответить 
Старый 16.05.2009 13:56   #4  
Real ID Group uParty Member Ultimate
Аватар для Nadir Zaitov
Оффлайн
Сообщений: 13,210
+ 4,958  9,176/3,940
– 170  137/105

UzbekistanОтправить сообщение для Nadir Zaitov с помощью Skype™
Цитата:
Сообщение от Barbedo Посмотреть сообщение
Видимо, нуобходимо уточнить условие: пляж занимает лишь определенный отрезок правого берега:
Интересно, если задачу перефразировать как "провести окружность через две данные точки В и С так, чтобы она касалась прямой AD", то решить должно быть будет легче.
__________________
Тот факт, что медуза выжила 650 миллионов лет без мозгов, даёт надежду многим.
Ответить 
"+" от:
Старый 16.05.2009 14:25   #5  
Real ID Group Ultimate uParty Member ЕС
Аватар для Evgeniy Sklyarevskiy
Оффлайн
UZINFOCOM
Сотрудник ZiyoNET
AKA:ЕС, barbaris, arbuz
Сообщений: 32,709
+ 10,568  16,236/8,377
– 50  472/298

UzbekistanLiveJournalАккаунт на TwitterFacebook
Цитата:
Сообщение от Nadir Zaitov Посмотреть сообщение
Цитата:
Сообщение от Barbedo Посмотреть сообщение
Видимо, нуобходимо уточнить условие: пляж занимает лишь определенный отрезок правого берега:
Интересно, если задачу перефразировать как "провести окружность через две данные точки В и С так, чтобы она касалась прямой AD", то решить должно быть будет легче.
Может так случиться, что ни одна окружность, проходящая через эти точки, не коснется второго берега...
Ответить 
Старый 16.05.2009 15:50   #6  
Known ID Group uParty Member
Аватар для b_a_lamut
Оффлайн
Наладчик радиоэлектронного оборудования и приборов
Сообщений: 2,852
+ 2,023  1,795/942
– 2  11/11

UzbekistanLiveJournal
Цитата:
Сообщение от Barbedo Посмотреть сообщение
Видимо, нуобходимо уточнить условие: пляж занимает лишь определенный отрезок правого берега:
Ну вот... С этими уточнениями, картина, естественно, сильно меняется. Сейчас подумаю, если не отвлекут неотложные дела.
Ответить 
Старый 16.05.2009 19:02   #7  
Known ID Group uParty Member
Аватар для b_a_lamut
Оффлайн
Наладчик радиоэлектронного оборудования и приборов
Сообщений: 2,852
+ 2,023  1,795/942
– 2  11/11

UzbekistanLiveJournal
Цитата:
Сообщение от Barbedo Посмотреть сообщение
Видимо, нуобходимо уточнить условие: пляж занимает лишь определенный отрезок правого берега:
Невооружённым глазом видно (если приглядеться), что самый большой угол - это угол BEC. Вверх или вниз от точки Е - угол будет уменьшаться. Но это моё личное мнение, и оно может не совпадать со всеми остальными.


Последний раз редактировалось b_a_lamut; 16.05.2009 в 19:24.
Ответить 
Реклама и уведомления
Старый 16.05.2009 20:20   #8  
Real ID Group uParty Member
Аватар для Shuhrat Ismailov
Оффлайн
Сообщений: 3,411
+ 2,928  2,654/1,361
– 84  129/82

UzbekistanОтправить сообщение для Shuhrat Ismailov с помощью Skype™Facebook
Цитата:
Сообщение от Nadir Zaitov Посмотреть сообщение
Цитата:
Сообщение от Barbedo Посмотреть сообщение
Видимо, нуобходимо уточнить условие: пляж занимает лишь определенный отрезок правого берега:
Интересно, если задачу перефразировать как "провести окружность через две данные точки В и С так, чтобы она касалась прямой AD", то решить должно быть будет легче.
Верно, ваша переформулировка эквивалентна исходной.

Цитата:
Сообщение от Evgeniy Sklyarevskiy Посмотреть сообщение
Может так случиться, что ни одна окружность, проходящая через эти точки, не коснется второго берега...
По-видимому, это не так.
Точку касания всегда можно найти. Именно, если точка D на берегу, не содержащему отрезок BC, такова, что AD^2 =AB•AC, то AD — касательная к окружности.

Аналогичная задача, приближенная к условиям Узбекистана, в которой нет бухт:
Берега реки представляют из себя параллельные прямые. Найти на берегу реки точку, из которой пляж, расположенный на другом берегу, виден под наибольшим углом.
__________________
http://www.matholymp.zn.uz
Ответить 
Старый 16.05.2009 21:04   #9  
Known ID Group uParty Member
Аватар для b_a_lamut
Оффлайн
Наладчик радиоэлектронного оборудования и приборов
Сообщений: 2,852
+ 2,023  1,795/942
– 2  11/11

UzbekistanLiveJournal
Цитата:
Сообщение от Evgeniy Sklyarevskiy Посмотреть сообщение
Может так случиться, что ни одна окружность, проходящая через эти точки, не коснется второго берега...
Это как? Уверен, что имменно в точке касания окружности с берегом и будет наибольший угол

Ответить 
Старый 16.05.2009 21:05   #10  
Real ID Group uParty Member Ultimate
Аватар для Nadir Zaitov
Оффлайн
Сообщений: 13,210
+ 4,958  9,176/3,940
– 170  137/105

UzbekistanОтправить сообщение для Nadir Zaitov с помощью Skype™
Цитата:
Цитата:
Сообщение от Shuhrat Ismailov Посмотреть сообщение
Точку касания всегда можно найти.
По видимому это не так, если второй берег совпадает с исходным В нашем случае мы не считаем прямую бесконечно большой окружностью
__________________
Тот факт, что медуза выжила 650 миллионов лет без мозгов, даёт надежду многим.
Ответить 
Ответить




Powered by vBulletin® Version 3.8.5
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd. Перевод: zCarot
Advertisement System V2.5 By Branden
OOO «Единый интегратор UZINFOCOM»


Новые 24 часа Кто на форуме Новички Поиск Кабинет Все прочитано Вверх