|
|
|
|||||||
| Знаете ли Вы, что ... | |
| ...для каждой темы существует свой раздел. Изучите структуру форума. Если соответствующего раздела нет, то всегда есть раздел "Разное" :) | |
| << Предыдущий совет - Случайный совет - Следующий совет >> | |
| Разминка для мозгов Загадки, задачи, головоломки - тренируем мозг |
|
|
Опции темы | Опции просмотра |
|
|
#1 | |||
ex-wild_JohnСупермодератор |
Вспомнилось участие в этой олимпиаде, решил поискать в интернете. Как пишется на официальном сайте:
Цитата:
Задача №1. Числа p и q таковы, что параболы y=-2x^2 и y=x^2+px+q пересекаются в двух точках, ограничивая некоторую фигуру. Найдите уравнение вертикальной прямой, делящей площадь этой фигуры пополам. Задача №2. Найдите наименьшее натуральное n, для которого число n^n не является делителем числа 2008!=1· 2·...· 2008. Задача №3. На едином экзамене 333 ученика допустили в общей сложности 1000 ошибок. Возможно ли при этом, что учеников, сделавших более чем по 5 ошибок, оказалось больше, чем учеников, сделавших менее чем по 4 ошибки? Задача №4. Через центр O вписанной в треугольник ABC окружности проведена прямая, перпендикулярная прямой AO и пересекающая прямую BC в точке M. Из точки O на прямую AM опущен перпендикуляр OD. Докажите, что точки A, B, C и D лежат на одной окружности. Задача №5. Станок выпускает детали двух типов. На ленте его конвейера выложены в одну линию 75 деталей. Пока конвейер движется, на станке готовится деталь того типа, которого на ленте меньше. Каждую минуту очередная деталь падает с ленты, а подготовленная кладется в ее конец. Через некоторое число минут после включения конвейера может случиться так, что расположение деталей на ленте впервые повторит начальное. Найдите: а) наименьшее такое число, б) все такие числа. Задача №6. Игрок на компьютере управляет лисой, охотящейся за двумя зайцами. В вершине A квадрата ABCD находится нора: если в нее, в отсутствие лисы, попадает хотя бы один заяц, то игра проиграна. Лиса ловит зайца, как только оказывается с ним в одной точке (возможно, в точке A). Вначале лиса сидит в точке C, а зайцы — в точках B и D. Лиса бегает повсюду со скоростью не больше v, а зайцы — по лучам AB и AD со скоростью не больше 1. При каких значениях v лиса сможет поймать обоих зайцев? Задача №7. Среди вершин любого ли многогранника можно выбрать четыре вершины тетраэдра, площадь проекции которого на любую плоскость составляет от площади проекции (на ту же плоскость) исходного многогранника а) больше, чем 1/4, б) не меньше, чем 1/9, в) не меньше, чем 1/7?
__________________
Герман - это не имя, это особое состояние души (Джим Анджер) |
|||
|
|
Ответить |
|
5 "+" от:
|
|
|
|