![]() |
infoliokrat, Вы знаете, мне кажется это всемирный заговор математиков. Причем самым центром этого заговора является понятие бесконечности (есть еще деление на ноль, но тут даже посвященные не все истину знают).
Вот к примеру, любой математик, скажет вам что ряд 1 - 2 + 3 - 4 + 5 - 6 + ... - расходится, хотя простым сложением можно выяснить что его сумма равна 1/4. |
Цитата:
|
Цитата:
|
Цитата:
Для 4s=1 не следует, что s=1/4. Вот в чем прикол. Там умножение на 4 условное. |
Цитата:
|
Цитата:
Например, можно условно суммирование расходящихся рядов представить так: http://latex.codecogs.com/gif.latex?...e;)^k}{k}x^{k} Но как мне кажется, было доказательство, что расходящийся ряд можно так перетасовать, что можно заставить его сходиться к чему угодно. Под знаком лимита все ряды сходятся :) |
Цитата:
Цитата:
Например: (... пусть бесконечный набор цифр) сложим столбиком 1/3+1/3+1/3=3*1/3=0,99999...=0,999...99 =1= 1,000...01 Число 0,000...01 это что, разве НОЛЬ? Не эти ли "ненулевые нули" в неопределенностях учавствуют, которые приводил Nadir Zaitov... (а может зря считается для недискретного мира, что любое число в иде десятичной дроби с разделительной ЗПТ можно цифрами записать в одну строку ОДНОЗНАЧНО?. Тогда и к бесконечным рядам "никаких претензий", пусть ведут себя как угодно, "беспредельщики же"=такие ряды.) |
Цитата:
В то же время знакопостоянный расходящийся ряд как не тусуй, а сходящимся его не сделать. Тоже самое про абсолютно сходящийся ряд (т.е. ряд из соотв. модулей сходится , а сам не обязательно): как его не тусуй, а другую сумму не получишь. |
Цитата:
Цитата:
|
Цитата:
Цитата:
«Истончённый» гармонический ряд Ряд Кемпнера (англ.)Если рассмотреть гармонический ряд, в котором оставлены только слагаемые, знаменатели которых не содержат цифры 9, то окажется, что оставшаяся сумма сходится к числу <80[7]. Более того, доказано, что если оставить слагаемые, не содержащие любой заранее выбранной последовательности цифр, то полученный ряд будет сходиться. Однако из этого будет ошибочно заключать о сходимости исходного гармонического ряда, т.к. с ростом разрядов в числе n, все меньше слагаемых берется для суммы "истонченного" ряда. Т.е. в конечном счете мы отбрасываем подавляющее большинство членов образующих сумму гармонического ряда, чтобы не превзойти ограничивающую сверху геометрическую прогрессию. А чем хуже (чем "провинились") остальные цифры (кроме 9)? Если и для них применить УТВЕРЖДЕНИЕ аналогичное (правомочно или нет СИЕ- не знаю!), типа такого, что Если рассмотреть гармонический ряд, в котором оставлены только слагаемые, знаменатели которых не содержат цифры ?, то окажется, что оставшаяся сумма сходится... |
Текущее время: 10:45. Часовой пояс GMT +5. |
Powered by vBulletin® Version 3.8.5
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd. Перевод:
OOO «Единый интегратор UZINFOCOM»